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Abstract

A new dilute turbulent gas±solid two-phase ¯ow model in the grain inertia ¯ow regime is developed in
the present study. A set of time-averaged conservation equations for mass and momentum, and a two-
equation multiscale k±o closure are derived. The solid phase is composed of inelastic, frictional,
uniform spheres. Each Lagrangian solid particle is tracked by integrating the particle equations of
translational and rotational motion. The couplings in volume fraction, momentum and kinetic energy
between the ¯uid and the solid phases are incorporated in this model. Turbulence modulation due to the
solid particles is formulated on the basis of experimental observations. Interparticle collisions and
particle±wall collisions are emulated by using a sticking±sliding collision model. The two-phase model is
applied to study the steady state ¯ow in a vertical pipe. Depending upon the particle size, mass loading
and bulk carrier-¯uid velocity, the two-phase system can experience turbulence attenuation, or
augmentation, or a combination of both. In general, good agreement is found between the simulation
prediction and the experimental data for the mean ¯uid and solid velocities. Furthermore, there is
reasonable qualitative agreement for the ¯uid turbulence kinetic energy between the two. Many
interesting numerical results for macroscopic ¯ow properties of both ¯uid and solid phases are reported
in this paper. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Depending upon the particle Reynolds number, the solid concentration, the rate of
deformation, the material properties of the ¯uid and the solid particles, various regimes of two-
phase ¯ows can be generated. For the case of low particle Reynolds number and dilute
concentration, the ¯uid phase plays a major role in determining the dynamics of the system.
This viscous ¯ow regime has been investigated by a number of researchers, and the subject is
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relatively well understood. However, our understanding of the grain-inertia ¯ow regime is still
much more primitive, despite the vast number of applications found in industries and natural
sciences. Recent reviews on the subject are available; for example, Crowe et al. (1996),
Elghobashi (1994) and Jackson (1993).
Tsuji et al. (1984), Lee and Durst (1982) and Maeda et al. (1980) utilized the laser Doppler

technique to measure the distributions of air±solid two-phase ¯ow properties, such as mean
¯uid velocity, streamwise turbulence intensity, and mean solid particle velocity in air±solid two-
phase ¯ows inside vertical pipes. These experiments demonstrated some of the fundamental
behavior of gas±solid suspensions.
Lun and Liu (1997) employed numerical simulations to study the dilute turbulent gas±solid

¯ows in the grain-inertia regime in horizontal channels. The model incorporated couplings in
volume fraction and momentum between the two phases, and an anisotropic k±e two-equation
closure. Many interesting ¯ow properties were obtained from the simulations; for example
grain stresses, granular temperatures, turbulence stresses and intensities, mean ¯uid and solid
velocity distributions. There was substantial agreement between the experimental measurements
of Tsuji et al. (1987) and the simulation predictions. Particle rotation and interparticle
collisions were found to be instrumental in keeping the solid phase suspended in a steady state
horizontal ¯ow. The multiphase model of Lun and Liu did not account for the interfacial
coupling in kinetic energy.
We follow the approach of Lun and Liu (1997) to study the problem of dilute turbulent gas±

solid ¯ows. The turbulent gas phase is modeled by a set of time-averaged conservation
equations for mass and momentum, and a second-order multiscale k±o closure. The solid
phase consisting of inelastic, frictional, uniform spherical particles is simulated numerically
based on a Lagrangian approach in which the motion of each particle is tracked. A sticking±
sliding collision model is employed for the particle±particle collisions and the particle±wall
collisions. A two-way coupling numerical iterative scheme is used to incorporate the e�ects of
interfacial interactions in volume fraction, momentum and kinetic energy. The simulation result
is compared with the experimental data.

2. Fluid phase transport equations

A set of conservation equations describing the ¯uid phase of a two-phase ¯uid±solid mixture
may be derived readily by following the traditional control volume approach. The
instantaneous conservation of mass, momentum and kinetic energy equations can be expressed
as,
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where f is the local speci®c resultant interfacial force, and g is the gravitational acceleration.
The instantaneous ¯uid velocity is u � U � u 0, and the instantaneous ¯uid stress tensor is pf �
Pf � p 0f : Subscripts f and s denote the ¯uid phase and the solid phase, respectively. Upper case
quantities represent time-averaged values, whereas primed quantities depict ¯uctuation ones.
Variables Ef and Es are the ¯uid and solid volume fractions �Ef � Es � 1), rf and rs are the ¯uid
and solid mass densities, respectively. The quantity _Ew in Eq. (3) represents the rate of
turbulence kinetic energy generated due to the ®nite size of the solid particles.
Flows with relatively large and massive particles moving at intermediate particle Reynolds

number in the inertia regime are considered in the present study. The solid to ¯uid mass
density ratio, rs=rf , is of the order 10ÿ3. The ratio of the particle response time to the eddy
turnover time is of the order >102 (Lun and Liu, 1997). Consequently, the in¯uence of ¯uid
turbulence on the particles' motion would be small. The ¯uctuations of ¯ow properties of the
solid and the ¯uid phases may be assumed to be uncorrelated. The solid volume fraction,
which is a volumetric mean quantity, is assumed to be independent of the turbulence averaging
time-scale of the ¯uid phase. After applying the Reynolds time-averaging technique to Eqs.
(1)±(3), the following equations for incompressible ¯ows are obtained
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where t � ÿrfu
0u 0 is the turbulence stress tensor, k � u 0 2=2 is the speci®c turbulence kinetic

energy, and q � rfu
0 2u 0=2 is the turbulence kinetic energy ¯ux. The quantities with overbar

represent time-averaged values.
In order to close the above set of equations, we generalize Wilcox's multiscale anisotropic

turbulence model for single-phase ¯uid (Wilcox, 1994) to treat dilute suspensions with solid
volume fraction of the order 10ÿ3. After applying time-averaging to equations of higher
moment of ¯uctuation velocities (which are generated using the momentum equation (2)), and
after modeling various terms in a manner similar to that performed for a single-phase
turbulent ¯uid, the Reynolds-stress equation for two-phase ¯ows can be written as
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where mT, m and n are the eddy, absolute and kinematic viscosities, respectively, and dij is the
unit tensor. The last term on the right hand side of Eq. (7) is included so that contraction of
indices in Eq. (7) results in an expression equivalent to Eq. (6). The pressure±strain correlation
is
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dissipation rate equation (which may be derived from the e-equation) is
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where the rotation tensor is Oij� 1
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�: The upper partition energy equation is
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where e is the kinetic energy of the small eddies, and kÿ e is the kinetic energy of the large
eddies. Since only dilute systems are considered here, the terms,
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in the Reynolds-stress equation (7), and the extra-production/dissipation terms,
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in the speci®c dissipation rate equation (9) are basically of higher order, thus they are
neglected.
We adopt the low Reynolds number modi®cations for single-phase ¯uid given by Wilcox

(1994) to the present two-phase multiscale model. The closure coe�cients in the above
equations are given as follows

a� � a�o � ReT=Rk
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â � 42

55
, ao � 1

10
, a�o �

b
3

b � 3

4
, b̂ � 6

55
, ĝo �
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One ®ne feature of the multiscale k±o model is that the equations can be integrated
numerically right up to the solid boundaries without the need of damping functions (Wilcox,
1994).
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3. Equations of particle motion

Following Lun and Liu (1997), the equation for translational motion of a particle in a
turbulent ¯uid may be written as

mp

dv

dt
� mpg� FD � FLS � FLM: �11�

The particle drag force is

FD � 1

8
rfpd

2CDjvrjvr �12�

where the drag coe�cient CD is commonly given as (Clift and Gauvin, 1971)
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ÿ
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1� 0:15Re0:687p

� ÿ
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�
and Rep � rfvrd=m is the particle Reynolds number. The Sa�man (1965, 1968) lift due to ¯uid
shearing motion is
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According to Mei (1992), the coe�cient CLS may be expressed as
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dy jd=�2vr�: The Magnus lift due to particle rotation is
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The Magnus lift coe�cient CLM may be expressed as (Lun and Liu, 1997)

CLM � djorj
jvrj RepR1�
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�
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�
In the above equations, mp is the mass of a particle, Ux is the streamwise x-component of the
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mean ¯uid velocity, v is the instantaneous linear velocity of the particle. The quantities vr �
uÿ v and ooor � OOOf ÿ ooo are the instantaneous relative linear and angular velocities between the
local ¯uid and the particle, respectively. The local mean angular velocity of the ¯uid is de®ned
as OOOf � 0:5r � U:
Since the density ratio of gas to solid being considered is of the order 10ÿ3, the Basset force

due to unsteady history e�ect and the virtual mass force due to acceleration of ¯uid
surrounding the solid particle are small compared to the drag and the lifts. Thus, they are
neglected.
The rate of angular momentum change of a spherical particle interacting with a viscous ¯uid

may be written as (Dennis et al., 1980)

mpd
2

10

dooo
dt
� rfd

2

64

�
6:45

Re0:5o
� 32:1

Reo

�
jooorjooor �20RReoR1000�

where the spin Reynolds number is de®ned as Reo�rfd
2jooorj=�4m�:

4. Collision model

The stickingÐsliding collision model presented in Lun and Bent (1994) is employed for
particle±particle and particle±wall collisions, in the present study. The model is simple and can
reproduce result reasonably close to a number of experimental measurements.
Consider a collision between two inelastic, frictional spherical particles 1 and 2 with

velocities v1 and v2, angular velocities ooo1 and ooo2, respectively. All collisions are regarded as
binary and instantaneous. During the impacts, the interstitial ¯uid e�ect is neglected. The
peripheral velocities of particles 1 and 2 are

g1 � v1 ÿ d

2
�K� ooo1�

and

g2 � v2 � d

2
�K� ooo2�

where K is the unit vector along the centerline from particle 1 to particle 2. The total relative
velocity, g12, at the contact point just prior to the collision is

g12 � v12 ÿ d

2
�K� ooo12� �15�

where v12 � v1 ÿ v2 and ooo12 � ooo1 � ooo2: The components of g12 are changed in a collision such
that

K � g�12 � ÿep�K � g12� �16�

K� g�12 � ÿbp�K� g12� �17�

C.K.K. Lun / International Journal of Multiphase Flow 26 (2000) 1707±1736 1713



where quantities with superscript asterisk denote post-collisional values, ep is the coe�cient of
restitution in the normal direction, and bp is called the coe�cient of restitution in the
tangential direction at the point of contact.
Using Eqs. (16) and (17) in Eq. (15), the relationships between the pre- and post-collisional

velocities can be written as

mp

ÿ
v1 ÿ v�1

� � mp

ÿ
v�2 ÿ v2

� � J �18�

I
ÿ
ooo�1 ÿ ooo1

� � I
ÿ
ooo�2 ÿ ooo2

� � ÿd�K� J�=2 �19�
and

J � mpZ2g12 �mp�Z1 ÿ Z2�K�K � g12� �20�
where J is the impulse, Z1 � �1� ep�=2, Z2 � 0:5�1� bp�Kr=�1� Kr�, and Kr � 4I=�mpd

2� is a
non-dimensional moment of inertia parameter �Kr � 2=5 for sphere).
In oblique impacts, the normal and tangential impulses at the contact point are assumed to

obey the Coulomb law of friction. In the case of tangential impulse being less than the product
of the friction coe�cient and the normal impulse, i.e. jK� Jj < mpjK � Jj, sticking contact
occurs. The surface tangential velocity is written as

K� g�12 � ÿbo�K� g12� �21�
where bo is a constant characterizing the restitution of velocity in the tangential direction for
sticking contacts, and in general, 0RboR1: Positive bo denotes particles rebounding with
reverse spin caused by the restoration of elastic energy in the tangential direction.
On the other hand, when the tangential impulse is greater or equal to the product of the

friction coe�cient and the normal impulse, sliding contact occurs and the following equality
applies,

jK� Jj � mpjK � Jj: �22�
From Eqs. (20) and (22), the tangential coe�cient of restitution is found explicitly as

bp � ÿ1� mp

ÿ
1� ep

�ÿ
1� K ÿ1r

�jK � g12j=jK� g12j: �23�
When the collisional properties ep, bo and mp, and the initial rotational and translational
velocities of the particles are known, the impulse J in Eq. (20), the coe�cient bp in Eq. (21) or
(23), and the post-collisional velocities in Eqs. (18) and (19) can be determined.
In the case where a particle collides with a ¯at wall, the change in particle linear and angular

momenta are

mp

ÿ
v1 ÿ v�1

� � J �24�

I
ÿ
ooo�1 ÿ ooo1

� � ÿd�n� J�=2 �25�
and
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J � 2mpZ2g12 � 2mp�Z1 ÿ Z2�n�n � g12�, �26�
where n is the unit normal perpendicular to the ¯at wall surface.

5. Tubulence modulation

In the grain-inertia regime, the ¯uid±solid interaction plays an important role in determining
the ¯ow dynamics of the two-phase system. A fairly dilute concentration of solid particles can
cause appreciable modi®cation of the ¯uid phase ¯ow properties. It is obvious in Eq. (5) that
the mean speci®c interfacial force,

Åf � 1

mp

XN
j�1

ÿ
ÅFDj � ÅFLSj � ÅFLMj

�
, �27�

which is the resultant of the drag and lifts acting on the particles, is responsible for the
alteration of the mean ¯uid velocity distribution.
According to Eq. (6), modulation of ¯uid turbulence kinetic energy can arise from the

combined e�ect of: (i) the mean rate of turbulence kinetic energy dissipation per unit volume
due to the interfacial forces, ÿEsrsf

0 � u 0, and (ii) the mean rate of turbulence kinetic energy
production per unit volume due to the ®nite size of the solid particles, _Ew: Numerical
approximation for the interfacial dissipation rate can be obtained readily by using the
Lagrangian particle approach, which will be described shortly. Here, we focus on the second
term.
Wu and Faeth (1994) measured experimentally the modi®cation of turbulence intensity

distributions caused by a single solid sphere in a turbulent ¯ow ®eld inside a pipe. The particle
Reynolds number spanned the range 135±1560. The mean streamwise velocity of the turbulent
wakes, Uwx, was found to scale like self-preserving round laminar wakes with enhanced
viscosities due to turbulence. It was given as

Uwx � CDRet

32

�
d

xÿ xo

�
juÿ vj exp

�
ÿ r2

2`2

�
�28�

where x is the streamwise distance from the center of the sphere, xo is the nominal origin of
the wake, and r is the radial position. The characteristic wake width is

` � d

�
2
�xÿ xo�
dRet

�1=2
The turbulence Reynolds number is

Ret � djuÿ vj
nt

The local turbulence kinematic viscosity may be expressed as
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nt=n � 1 0RRepRRec

nt=n � 1� 1:295

�
Rep ÿ Rec

135ÿ Rec

�
Rec < Rep < 135

nt=n � 0:017Rep 135RRep < 310

nt=n � 1:2� 0:000042Re2p 310RRep < 610

nt=n � 0:029Rep 610RRep < 1560 �29�

The ®rst two correlations in Eq. (29) are proposed here to complement the rest given by Wu
and Faeth (1994), in order to extend the particle Reynolds number to a lower range of values.
The ®rst relationship is rather obvious. In the second one, the viscosity ratio is assumed to
vary linearly with Rep similar to the rest, except the transitional one for 310RRep < 610: The
onset of ¯ow separation around a smooth sphere in a laminar environment occurs at a critical
particle Reynolds number Rec of 24 (Taneda, 1956). Such a critical value is likely to be
lowered in cases with turbulent surroundings. In addition, particle rotation and the ®nite size
e�ect of neighboring particles could alter the critical Reynolds number as well. The
neighboring particle-size e�ect is especially prominent in high particle concentrations.
Unfortunately, due to the lack of pertinent information, the choice of Rec is somewhat
arbitrary at the present time. We have chosen Rec so as to ``optimize'' the agreement between
the simulation predictions and the experimental result.
In the range of 135RRep < 1560 (Wu and Faeth, 1994), the dimensionless streamwise r.m.s.

velocity ¯uctuations in the near wake region,

����������
u 0 2wx

q
=
��������
u 0 2x

q
, was found to be 4 to 6; where��������

u 0 2x

q
is the ambient turbulence intensity along the axis of the wake. In the range of

135RRepR240, the turbulence modi®cation due to the cross-stream r.m.s. velocity ¯uctuations,���������
u 0 2wr

q
=
��������
u 0 2r

q
, was relatively small. However, when the particle Reynolds number increased to

the range of 300RRepR600, the dimensionless cross-stream ratio also became 4 to 6. The
cross-stream r.m.s. velocity ¯uctuations was mainly caused by the shedding of vortices behind
the sphere, once the critical Strouhal number at Rep of 300 was surpassed. For Rep > 600, the
dimensionless cross-stream ratio increased somewhat further.
On the basis of the above observation, we propose here a model to estimate the modulation

of turbulence due to solid particles for 0RRepR1560: The present ¯ow system is rather
complex since each solid particle can traverse freely in three-dimension unlike the axisymmetric

case tested by Wu and Faeth. First, we assume that the wake r.m.s. velocity ¯uctuation,

������
u2

w

q
,

varies exponentially in the axial and radial directions similar to Uwx in Eq. (28). Furthermore,

it is proportional to the local ambient r.m.s. velocity ¯uctuation
��������
u 0 2

p
�� �����

2k
p �, thus,
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2`2

�
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Inferring from the experimental result of Wu and Faeth, the wake coe�cient CW may be
expressed as

CW � 0
ÿ
RepRRec

�
CW � 16=3

ÿ
Rec < Rep < 310

�
CW � 34=3

ÿ
310RRepR1560

� �31�

The ®rst relation in Eq. (31) states that if Rep is less than Rec, then the particle causes no
turbulence modulation. For Rec < Rep < 310, only the ``streamwise'' component is e�ective in

augmenting the turbulence ¯uctuations. By employing a constant ratio of

����������
u 0 2wx

q
=
��������
u 0 2x

q
� 4,

and approximating u 0 2x to be 2k/3, we obtain the factor 16/3 in the second expression. In the

third one, according to the measurements in the pipe-¯ow experiment of Wu and Faeth, the

``cross-stream'' to ``streamwise'' r.m.s. wake velocity ¯uctuation ratio,

���������
u 0 2wr

q
=
����������
u 0 2wx

q
, is 3/4.

Assuming that the second cross-stream ratio,

����������
u 0 2wy

q
=
����������
u 0 2wx

q
, is of the same order of magnitude

as the ®rst, one obtains CW � 34=3: The turbulence modulation imparted in the ¯uid phase by
the solid phase is assumed to decay in the same manner as the regular eddies, since the wakes
are carried downstream by the surrounding ¯uid.
Our main interest is to approximate the rate of turbulence kinetic energy per unit volume,

_Ew, which is generated by the wakes behind the solid particles. The e�ect of particle rotation
on the wake intensity is assumed to be negligibly small. One may estimate the rate of
turbulence kinetic energy generated per solid particle by using

_ew �
�
cs

rf

2
u 0 2wvr � n dA:

where n is the unit normal of the small area dA. After substituting Eq. (30) into the above
integral, and integrating over the entire area from radius r � 0 to 1 at �xÿ xo�=d � 1, one
obtains

_ew � 2pCWrfntk

Note that since _ew is a local quantity for each particle per se, the local interfacial relative
velocity �vr� and the speci®c kinetic energy (k ) are treated as constants in the integration.
Finally, we have _Ew � n _ew, i.e.

_Ew � 2pnCWrfntk �32�
where n is the solid particle number density (i.e., number of particles per unit volume). With
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Eqs. (29) and (32), it is now possible to assess the degree of turbulence modulation due to solid
particles at Rep up to 1560.
Other researchers had previously modeled the turbulence kinetic energy production rate; for

example Yuan and Michaelides (1992) and Yarin and Hetsroni (1994). Yuan and Michaelides
proposed that _Ew depended on the ¯uid mass density, the kinetic energy di�erence between the
¯uid and the solid particle, the square of the base diameter of a half ellipsoidal wake, and a
certain unknown function of the e�ective length of the wake. By using a boundary layer
approximation and assuming a quasi-stationary character of the wake with a certain velocity
pro®le, Yarin and Hetsroni obtained an expression for _Ew, which was found to be a function
of the ¯uid±solid particle relative velocity, the ``mass content'' of a particle in a ¯uid element,
the interfacial mass density ratio, and the drag coe�cient. Similar to the present work, the
empirical coe�cients in both models must be determined by means of experiments.

6. Numerical procedure

The above turbulent two-phase model is applied to simulate gas±solid mixture ¯ows in
vertical pipes in an approach similar to that taken by Lun and Liu (1997) for ¯ows in
horizontal channels. A central di�erence scheme with second order accuracy is used to
numerically integrate the ¯uid-phase mean transport equations (4), (5) and (7)±(12). The
instantaneous ¯uid velocity, which is needed in the integration of the particle motion equations
in the solid-phase computation, is composed of the sum of a mean component and a
¯uctuation component. The mean ¯uid velocity ®eld is obtained from the ®nite di�erence
method, whereas the ¯uid ¯uctuation velocity at each node is sampled from a Gaussian
distribution based on the r.m.s. of the turbulence intensity in each direction. The mean and
instantaneous ¯uid properties at the particle center are linearly interpolated from values at the
closest grid nodes of the ¯uid ®nite-di�erence scheme enclosing the particle.
Each ¯uctuation velocity represents an energetic eddy with a certain lifetime interacting with

the solid particles in its vicinity. The eddy lifetime is randomly sampled from a Gaussian
distribution based upon the random lifetime of turbulent eddies with the Lagrangian integral
timescale. For dilute ¯uid±solid systems, the eddy lifetime given by Wilcox's multiscale model
for single ¯uid-phase may be adopted (Wilcox, 1994),

TL � 0:09
k

e

where e � n @u
0
i

@x j

@u 0i
@x j

is the speci®c energy dissipation rate and is related to the speci®c dissipation
rate o as e � b�ok:
The mean interfacial momentum ¯ux per unit volume term, Esrs

Åf , in Eq. (27) for a particular
computational cell can be determined simply by time-averaging the net rate of momentum
change of particles passing through the cell within a certain duration. Likewise, the mean rate
of turbulence kinetic energy dissipation per unit volume due to interfacial forces �ÿEsrsu

0
i f
0
j � in

Eq. (7) can be obtained promptly since the ¯uctuation ¯uid velocity associated with each
particle is made available as described earlier. The mean rate of turbulence kinetic energy
production per unit volume, �_Ew, can be computed by time-averaging expression (32).
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In a number of preliminary simulations of vertical pipe-¯ows, we ®nd that the diagonal
components of ÿEsrsu

0
i f
0
j are the dominant contributions, whereas the o�-diagonal ones are

typically two order of magnitude smaller. Consequently, the o�-diagonal components are
neglected in the computations presented herein.
Initially, solid particles are randomly distributed inside a control volume enclosed by a

cylindrical solid side-wall and top and bottom periodic walls. Random ¯uctuation velocities in
addition to a mean velocity are assigned to each particle.
The motions of the particles are assumed to be uncorrelated and there is no other particle±

particle interaction except direct hard collisions. By numerically integrating the coupled
translational and rotational equations of motion for each particle in a small time step Dt using
fourth-order Runge±Kutta, a particle can be advanced from one position to another. Since the
non-dimensional time Dt� �� Dt=�d=Um�� is typically taken to be of the order 0.01, the
numerical integration error of the Runge±Kutta scheme is of the order 1.0Eÿ10. The particles
are moved at small time increment so that they traverse no more than 20% of the particle
diameter in each step. This ensures that the particles will not unknowingly pass through each
other or the solid wall and the probability of simultaneous multiple collisions is eliminated.
After all the particles had been moved, the distances between particle centers and between
particles and solid walls are computed. If the distance between two particle centers is less than
a particle diameter, then a particle±particle collision had occurred within the last time step.
Each collided particle is moved back to its old position at Dt, and then to the location where it
just touches its colliding partner. The impulse and the post-collisional particle velocities are
calculated according to Eqs. (18)±(20). A new trajectory for the collided particle is computed.
If however no collision has occurred at all, or after all the collisions have been dealt with, then
every particle is moved again for another Dt: After a speci®c time, new ¯uid properties are
computed by incorporating into the ¯uid ®nite-di�erence calculation, the information obtained
from the solid-phase computation; namely, the mean solid volume fraction, the mean
interfacial momentum ¯ux per unit volume, and the mean interfacial turbulence kinetic energy
dissipation and production rates associated with each grid cell. The new mean ¯uid properties
will subsequently be used in the solid-phase computation. Such a two-way coupling iterative
procedure continues until a speci®c time for ending the computation is reached. One way to
determine whether the simulation of the solid-phase ¯ow has reached steady state is that the
stepwise dimensionless error bounds for the total particle kinetic energy and the particle bulk
velocity approaches zero; a typical value of 0.01 is used for both, in the present study.
Similarly, a convergence error bound of the order 0.01 for the bulk velocity is set for the
integration of the ¯uid phase ¯ow. In other words, the overall accuracy of the numerical
scheme is of second order.

7. Result

The present turbulent two-phase model is implemented to simulate the experiments of air±
solid ¯ow in a vertical pipe conducted by Tsuji et al. (1984). The pipe inner diameter (D ) was
30.5 mm. Polystyrene beads were transported in the system. Unfortunately, the material
properties of the solid particles and the pipe are not available. The particle±particle and
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particle±wall collisional properties �ep, bo and mp� are regarded as same. The values of ep � 0:9,
bo � 0:4, mp � 0:47 (Lun and Liu, 1997), and the critical particle Reynolds number of Rec � 18
are used in the present computations. All plots in the paper are dimensionless, unless otherwise
speci®ed.
Fig. 1 shows the variation of pressure gradient with increasing carrier ¯uid velocity expressed

in terms of the pipe Reynolds number, ReD � UmD=n; where Um is the bulk ¯uid velocity. The
mass ¯ow rate of 0.5 mm particles is kept constant at gs � 0:03 kg/s. Excellent agreement is
found between the simulation result and the experimental measurements. The predictions for
single-phase ¯uid ¯ows are also plotted in the ®gure. The di�erence in pressure gradient
between the suspension and the single-phase ¯uid ¯ow represents the additional pressure loss in
transporting the solid phase, and it is clearly signi®cant. For example, the di�erence increases
from a factor of 4/3 to 2 with increasing mass loading �mL� from 2 to 3.8. In these dilute
systems, the kinetic mode dominates over the collisional mode in the solid phase, thus the
collisional properties of the solid particles and the pipe have little in¯uence on the pressure
drop.
Distributions of mean ¯uid velocity �U �x � Ux=Um� and streamwise turbulence intensity �u�x�
�u 0 2x�1=2=Um� for ®xed ReD are plotted in Figs. 2±4 for di�erent sizes of particles.
Unfortunately, the bulk ¯uid velocity of the experiments are not available. The mean ¯uid

Fig. 1. Variation of pressure gradient with pipe Reynolds number for constant solids mass ¯ow rate, gs (curves are
predictions).
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Fig. 2. (a) Mean ¯uid velocity distributions and (b) streamwise turbulence intensity pro®les in ¯ows with 0.2 mm
particles. Symbols: Tsuji et al. (1984); curves are predictions for Um � 10:6 m/s.
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Fig. 3. (a) Mean ¯uid velocity distributions and (b) streamwise turbulence intensity pro®les in ¯ows with 0.5 mm
particles. Symbols: Tsuji et al., 1984; curves are predictions for Um � 10:8 m/s.
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Fig. 4. (a) Mean ¯uid velocity distributions and (b) streamwise turbulence intensity pro®les in ¯ows with 1 mm

particles. Symbols: Tsuji et al., 1984; curves are predictions for Um � 11:3 m/s.
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velocities and turbulence intensities are normalized by the constant bulk ¯uid velocity used in
the simulations. The variable r is nondimensionalized by the pipe radius, R. There is
reasonable qualitative agreement between the simulation predictions and the experimental
measurements. Somewhat better quantitative agreement between the two can be obtained if the
``actual'' bulk ¯uid velocity for each test run is used. Nonetheless, we may estimate Um in these
dilute ¯ows by using trapezoidal quadratures and assuming uniform solid concentration
distributions. As a result, we ®nd that the bulk ¯uid velocities di�er to some degree in most
experiments. For example, in the case of 0.2 mm particles shown in Fig. 2, the Um are
approximately 10.95, 10.85, 10.48 and 10.14 m/s for mass loading of 0.5, 1.3, 1.9 and 3.2,
respectively. Similarly, Um for cases of 0.5 mm particles are about 10.7 and 10.8 m/s for mass
loading of 1.3 and 2.9, whereas those of 1 mm particles are about 11.0 and 11.7 m/s for mass
loading of 2 and 3, respectively. In fact, the di�erences in Um show up in the ®gures when one
compares the normalized velocity pro®les in each set of experiments. The simulations are based
on a constant Um (e.g. 10.6 m/s or ReD � 21600, in Fig. 2). Owing to continuity in
incompressible ¯ow, a decrease in mean ¯uid velocity near the center region always
accompanies an increase in the outer region of the pro®le. As a result, crossovers of mean
velocity pro®les appear. The majority of the experimental velocity pro®les do not cross each
other. The centerline ¯uid velocity is very sensitive to the bulk ¯uid velocity, the mass loading,
and whether the ¯ow has fully developed or not. Thus, it is not the most appropriate quantity
to be used for nondimensionalizing ¯ow properties such as velocities and turbulence intensities.
The quantitative discrepancies between the predictions and the measurements are partly due to
the di�erences in Um: Another factor possibly responsible for the discrepancies in turbulence
intensities is that the laser Doppler velocimeter (LDV) used by Tsuji et al. is not a 100% non-
intrusive measurement technique. The ¯uid phase was seeded with ®ne tracer particles so that
signals from particles passing over the laser beams could be correlated to yield quantities such
as ¯uid velocities and turbulence intensities. The mean diameter of the ammonium chloride
smoke particles used by Tsuji et al. was 0.6 mm. Such ®ne particles clang to the pipe wall. The
test section was cleaned about every 20 min in each test. The smoke particles not only changed
the surface properties of both the pipe and the solid particles, but they could attenuate the
turbulence intensities as well. Unfortunately at the present time, it is di�cult to estimate the
extent of the in¯uences of the smoke particles in the measurements.

It is instructive to examine the e�ects of various terms in the turbulence kinetic energy
equation (6), particularly the mean rate of turbulence kinetic energy dissipation per unit
volume due to interfacial forces, gf � ÿEsrsf

0 � u 0, and the mean rate of turbulence kinetic
energy production per unit volume due to the ®nite size of solid particles, �_Ew: As it turns out,
the extra dissipation term, g�f �gf=�rfU

4
m=n� is a destabilizing term, and without the production

term, �_E
�
w� �_Ew=�rfU

4
m=n�, the numerical solution diverges. Fig. 5 presents the simulation result

for cases with and without the two terms in the energy equation (6) (and correspondingly in
the dissipation equation (9)). The result for the single-phase ¯uid ¯ow is also plotted in the
®gure. Computation having the two energy terms (solid curves) shows that the mean ¯uid
velocity becomes ¯atter than the one without (dotted curves in Fig. 5(a)), even though the
streamwise resultant interfacial force, �f

�
x � �fx=�U 3

m=n�, (see Fig. 5(b)) is slightly smaller. This
illustrates that the turbulence kinetic energy, k� � k=U 2

m (Fig. 5(c)) can indeed in¯uence the
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mean ¯uid velocity signi®cantly through the turbulence stress terms in the momentum
equation.
In the absence of both the mean rates of extra dissipation and production terms (Fig. 5(d)),

the numerical solution (dotted curve) shows that there exists inherent turbulence damping in
the suspension as shown in Fig. 5(c). Such an inherent damping of turbulence intensities arises
due to the alteration of the mean ¯uid velocity distribution incurred by the mean interfacial
force. The inherent turbulence damping can be best realized perhaps in the suspension of small
and light particles. The turbulent ¯uid essentially drives and controls the motions of the solid

Fig. 5. Distributions of: (a) mean ¯uid velocity, (b) streamwise resultant interfacial forces, (c) turbulence kinetic

energy, and (d) mean rates of extra dissipation and production for system with 0.2 mm particles, mL � 1:9, and
Um � 10:6 m/s. Dashed curves: single-phase ¯uid ¯ow; dotted curves: two-phase ¯ow simulation without the extra
dissipation and production terms; solid curves: simulation with both terms.
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particles. The mean particle Reynolds number Rep is smaller than the critical particle Reynolds
number Rec for ¯ow separation, hence, there would be very limited turbulence enhancement.
As a result, small and light particles would cause turbulence attenuation in most situations. As
the particle diameter increases, Rep can become larger than Rec: Consequently, the turbulence
production term, �_Ew, can overcome the inherent damping as well as the extra dissipation �gf� in
certain region of the ¯ow ®eld. Thus, the ®nal outcome would be a combination of turbulence
damping in one area and augmentation in another. In the case of vertical pipe-¯ow shown in
Figs. 2(b) and 3(b), turbulence enhancement occurs in the center region while turbulence
damping takes place in the outer region. For large particles, if the range of Rep is greater than
300, the turbulence ®eld is always intensi®ed by the vortex shedding of the solid phase
(Fig. 4(b)). This is consistent with experimental result (Hetsroni, 1989). It is noteworthy that
the overall mean Rep for the 0.2 mm particles is of the order of 20; 85 for 0.5 mm particles,
and 350 for 1 mm particles.

Fig. 6(a) and (b) present the distributions of velocities for systems of 0.2 and 0.5 mm
polystyrene particles (Tsuji et al., 1984), respectively, while Fig. 6(c) and (d) show those for 0.2
and 0.4 mm glass beads (Lee and Durst, 1982). Fortunately, for this particular set of
polystyrene bead experiments, Tsuji et al. provided the bulk ¯uid velocities in addition to the
centerline ones. Thus, the measured bulk ¯uid velocities are used as the normalization
parameters. The values of ep � 0:97, bo � 0:44, mp � 0:40 (Lun and Liu, 1997), and Rec � 18
are used in the present simulations of air±glass particle ¯ow. However, since Lee and Durst
speci®ed only the centerline air velocities �Uc), the quantities plotted in Fig. 6(c) and (d) are
normalized by Uc: In general, the simulation predictions and the velocity measurements agree
reasonably well. We have shown only half of the symmetric velocity pro®le of the solid phase
in Fig. 6 in order to avoid confusion with those of the ¯uid phase. It is easy to locate the
change of sign in the mean relative velocities between the two phases as computed in the
simulation. For example, in the case of 0.2 mm polystyrene particles (Fig. 6(a)), the distance of
the sign change occurs at about 0.1 R from the wall.

Lee and Durst (1982) also reported the r.m.s ¯uctuation velocities of the ¯uid and solid
phases in addition to the velocity pro®les for 0.8 mm glass particles. However, when the
present multiphase model is applied to simulate such a case, the solid particles are found to be
continuously falling down instead of being lifted up. When the experimental value of maximum
interfacial relative velocity at the centerline of the ¯ow is used to calculate the drag force
acting on a 0.8 mm glass particle, the ratio of the drag to particle weight turns out to be about
0.6. As one examines the same ratio for all the other ¯ow systems presented in this paper, the
values vary somewhat but are always greater than unity as one may expect in these dilute
systems. Thus, perhaps such an anomaly was caused by a wide distribution of sizes in the
particular assortment of glass beads used by Lee and Durst.

Maeda et al. (1980) used relatively small copper particles with 0.093 mm diameter, and glass
particles with 0.045 and 0.136 mm diameters in their vertical pipe-¯ow experiments. When the
present simulation is used to predict the ¯ow properties of these experiments, the extra
turbulence production rate �_Ew in Eq. (6) turns out to be smaller than the extra dissipation rate
gf in the centerline region by a fair amount, as a result, it leads to divergence in the
computation of the ¯uid phase. The particle Reynolds number in these experiments is around
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Fig. 6. Distributions of mean ¯uid velocity (solid symbols) and solid particle velocity (open symbols) for systems
with: (a) 0.2 mm, (b) 0.5 mm diameter polystyrene beads (Tsuji et al., 1984), (c) 0.2 mm, and (d) 0.4 mm diameter
glass beads (Lee and Durst, 1982). Curves are predictions.
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Fig. 6 (continued)
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10, in which case, e�ects such as crossing trajectory and ¯uid±solid ¯uctuation correlation can
become important. Further study of these low particle Reynolds number ¯ows is necessary.
Simulation results for macroscopic properties such as solid concentration, resultant

interfacial force, turbulence intensity, rates of extra dissipation and production of kinetic
energy, mean particle rotational speed, translational and rotational granular temperatures, ¯uid
and solid stresses are shown in Figs. 7±11. The majority of these ¯ow properties is rather
di�cult to obtain in physical experiments, and therefore have not been reported. The plots are

Fig. 7. Distributions of: (a) mean ¯uid velocity, (b) streamwise resultant interfacial forces, (c) turbulence kinetic
energy, and (d) mean rates of extra energy dissipation and production. Dashed curves: mL � 0; dotted curves:

mL � 1; solid curves: mL � 2:1:
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based on simulated ¯ows with 0.2 mm particles, Um � 15:3 m/s, and mass loading of 1 and 2.1.
In the ®gures, dotted curves and solid curves represent cases of mL � 1 and 2.1, respectively.
The mean ¯uid velocity pro®le is modestly ¯attened as the mass loading increases from 1 to

2.1, as shown in Fig. 7(a). As one might anticipate, the mean streamwise interfacial force
increases with increasing mass loading except in the near wall region (Fig. 7(b)). Near the side-

Fig. 8. (a) Reynolds shear stress, (b) molecular shear stress.

Fig. 9. Distributions of: (a) solid concentration, (b) mean particle linear velocity, and (c) mean particle angular
velocity.
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wall, since the solid particles often travel faster than the ¯uid, the relative interfacial velocity
becomes negative and so does the interfacial force. In fact, the points at which the pro®les
intersect the abscissa are the same locations at which the mean velocity pro®les of the ¯uid and
the solid phase cross each other (see Fig. 6(a)). The mean interfacial force at the wall is about
twice that near the center region as shown in Fig. 7(b).
For the relatively small 0.2 mm polystyrene particles, increasing the mass loading in fact

attenuates the turbulence enhancement in most regions (Fig. 7(c)). In Fig. 7(d), it is interesting
to note that the extra dissipation term peaks near the side-wall while the extra production term
climaxes at a small distance o� the axis of symmetry. In general, both terms increase with
increasing mass loading.

Fig. 10. Distributions of granular translational and rotational temperatures.
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Fig. 11. Variations of solid-phase kinetic stresses, Pkij and collisional stresses, Pcij:
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Simulation result for the Reynolds shear stress �t�rx � trx=�rfU
2
m�� and the molecular shear

stress �P�frx � Pfrx=�rfU
2
m�� are plotted in Fig. 8. The Reynolds shear stress decreases with

increasing mass loading. This obviously is related to the increased dampening of turbulence
kinetic energy as shown in Fig. 7(c). In these dilute systems, the e�ect on the molecular shear
stress due to the increase in mass loading is rather insigni®cant since the alteration of the
velocity gradient is only minor (Fig. 7(a)).
Fig. 9(a) shows the variation of solid concentration �a�r � Es=Em, where Em is the bulk solid

volume fraction). The solid concentration in average decreases with increasing radius. The
mean particle linear velocity �V �x � Vx=Um� and the mean particle angular velocity �o�oy �
ooy=�Um=d�� are shown in Fig. 9(b) and (c). It is obvious that the no-slip boundary condition
does not apply for the solid phase at the side-wall, neither does the zero velocity gradient
condition in general. The solid phase slip velocity is determined by an intricate balance of
energy and momentum between the solid phase, the ¯uid phase and the side-wall. This is a
challenging problem for theoretical modeling. The same can be said about the mean particle
spin. By using numerical simulation, Lun (1996) studied the e�ect of various solid boundary
conditions on macroscopic properties in a single-phase granular Couette ¯ow; for example,
translational and rotational velocities, solid concentration, granular temperatures, grain stresses
and slip velocity. Similar kind of studies in two-phase ¯ows can likely shed more light on the
complicated problem at hand.
The granular translational temperature �T �t � Tt=U

2
m� and rotational temperature �T �r �

Tr=U
2
m� are plotted in Fig. 10. The granular temperatures are clearly anisotropic. The major

component in the translational mode is the streamwise one, Ttx, while the one in rotational
mode is Try: On average, the temperatures increase with increasing radius r.
The distributions of grain kinetic stresses �P�k � Pk=�rfU

2
m�� and collisional stresses �P�c �

Pc=�rfU
2
m�� are shown in Fig. 11. The anisotropic kinetic stresses are typically about three-

order of magnitude larger than the collisional ones in these dilute systems. The kinetic shear
stresses are symmetric, whereas the collisional ones are not. Gidaspow and Huilin (1998)
recently obtained experimental evidence for the existence of an equation of state for granular
particles which is analogous to the ideal gas law for dilute ¯ow. Such an equation, which was
predicted by the kinetic theory of granular ¯ows (Lun et al., 1984; Lun and Savage, 1987; Lun,
1991), relates the grain pressure to the granular temperature, solid concentration and particle
collisional properties. In passing, it is worthwhile to note that the couple stresses, which arise
from the anisotropy of shear stresses, are negligibly small (similar to those obtained by Lun
and Liu (1997), hence they are not presented here.
The ratio of the number of particle±particle collisions to the number of particle±wall

collisions is plotted against the mass loading in Fig. 12. The simulation result corresponds to
that shown in Fig. 1 for pressure gradient. The solid mass ¯ow rate is kept constant at gs �
0:03 kg/s, while the carrier bulk ¯uid velocity varies. As shown in Fig. 12, the collision ratio
increases with increasing mass loading. The number of interparticle collisions can become
greater than that of particle±wall collisions even in these dilute ¯ows with solid volume
fraction ranging from 0.00234 to 0.00451. Nonetheless, this is not surprising because as
demonstrated in the kinetic theory of granular ¯ow (Lun, 1991; Lun and Savage, 1986; Lun et
al., 1984), the particle collisional frequency depends not only on the solid concentration but
also on granular temperature. In other words, although the concentration might be dilute, if
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the granular temperature is large, the frequency of interparticle collisions can still be relatively
high.

8. Conclusion

A new dilute turbulent ¯uid±solid two-phase model, which incorporates the interfacial
couplings in volume fraction, momentum and kinetic energy, and a multiscale k±o closure, is
developed for ¯ows in the grain inertia regime. The model is implemented to simulate air±solid
¯ows in vertical pipes. In general, there is good agreement between the simulation predictions
and the experimental measurements for mean ¯uid and solid velocities, and reasonable
qualitative agreement in turbulence intensities. Although the suspensions might be dilute with
the solid volume fraction of the order 10ÿ3, the interfacial coupling e�ects are still signi®cant
and should not be ignored. The interfacial force is responsible for modulating the ¯uid and
particle velocity distributions but yet it is not the only factor. The interfacial kinetic energy
interactions can in¯uence not only the turbulence kinetic energy distribution but also the ¯uid
and particle velocity distributions. In other words, the mass, momentum and kinetic energy
interactions between the ¯uid and solid phases are intrinsically related as they should be in
reality.
Turbulence modulation in ¯uid±solid two-phase ¯ow system depends crucially on the

particle Reynolds number. If the range of particle Reynolds number is smaller than the critical

Fig. 12. Ratio of number of particle±particle collisions to number of particle±wall collisions versus mass loading.
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Reynolds number for ¯ow separation of individual grain, Rec, then the turbulence ®eld is
always attenuated. Such a situation is often encountered in systems with minute and light
particles. A combination of turbulence augmentation and attenuation can occur in ¯ow
systems where the range of particle Reynolds number encompasses Rec: However, if the range
of particle Reynolds number is greater than the critical Rep of about 300 for the initiation of
vortex shedding, then turbulence enhancement results as a consequence.
The present type of numerical simulation yields many interesting macroscopic ¯ow

properties, which are di�cult to obtain otherwise. At the same time, it also shows that there is
a greater need for experimental veri®cation of these new results now, than ever before. A set of
measurements of the kinematic ¯ow properties such as solid concentration, mean ¯uid and
solid velocities, turbulence intensities and granular temperatures, can be very useful in helping
better our understanding of the complex two-phase ¯ow problems.
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